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ABSTRACT
In this paper, we propose an extension to the existing reduced Kies distribution
called the extended reduced Kies (ExRKD) distribution. We study the properties of
the ExRKD and utilize it on real-world COVID-19 datasets to estimate parameters
with the help of maximum likelihood estimation (MLE) procedures. Also perform
simulation studies to evaluate the asymptotic behaviour of the MLEs, offering in-
sights into their performance and reliability.
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1. Introduction

Kumar and Dharmaja (2013) studied a particular form of the Kies distribution through
the name “the reduced Kies distribution(RKD)” and it has the following probability
density function (p.d.f.).

f (x) =
βxβ−1 exp

{
−
(

x
1−x

)β
}

(1 − x)β+1 (1)

where β > 0 and x ∈ (0, 1). The RKD can be viewed as a functional form of the
well-known Weibull distribution and it has been found extensive applications in several
areas, particularly in certain situations where the Weibull model fails to give better
fits. It enjoys several properties similar to that of Weibull distribution. The cumulative
distribution function (c.d.f.) of the RKD has an interesting property which observed
in the c.d.f. plot where all curves intersect at (0.5, exp (-1) point. The Hazard rate
function is either decreasing or increasing based on its values of the parameters. It is a
decreasing function for x < 1−β

2 provided β > 1 and increasing function of x if β > 1
or x > 1−β

2 with β < 1.The RKD is useful to studying data sets involving survival
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rates, incidence rates, and death rates. Kumar and Dharmaja (2017) introduced an
exponentiated version of the RKD and named it as “the exponentiated reduced Kies
distribution”. They investigated several characteristics of it and shown that it will be
suitable for modelling data sets with increasing or decreasing hazard rates.

Through the present paper we proposed a general class of RKD for modelling complex
data sets which possess increasing, decreasing and bathtub shaped hazard functions.
The proposed class we call “the extended reduced Kies distribution (or in short, the
ExRKD)”. In section 2, we provide the definition of the ExRKD along with derivation of
some of its properties such as expressions for raw moments, mean, variance, coefficient
of skewness and coefficient of kurtosis. Section 3 focuses on estimating the ExRKD
parameters, while in section 4 and 5 we examine certain application of the ExRKD
utilizing COVID data sets. Further we evaluate the efficiency of maximum likelihood
estimators (MLEs) through a simulation study.

2. Definition and Properties

In this section, we define the ExRKD and derive some of its statistical properties.
Definition 2.1. A continuous random variable X is said to have the extended reduced
Kies distribution (ExRKD) if its p.d.f. is expressed in the following form, in which
β > 0, ρ > 0, x ∈ (0, 1) and ω ∈ [0, 1] .

g (x) = g (x; β, ρ, ω)

= 1
x (1 − x)

[
ωβ

(
x

1 − x

)β

e−( x
1−x )β

+ (1 − ω) ρβ

(
x

1 − x

)ρβ

e−( x
1−x )ρβ

]
(2)

= 1
x(1 − x)

[
ωβu1e−u1 + (1 − ω) ρβu2e−u2

]
,

where u1 =
(

x
1−x

)β
and u2 =

(
x

1−x

)ρβ
. Clearly, when ρ = 1 , the p.d.f. (2) reduces

to the p.d.f. of the RKD as given in (1). Now we obtain the c.d.f., survival Function,
hazard function and an expression for the raw moments of the ExRKD through the
following results.
Result 2.1. The c.d.f. F(x) of the ExRKD is the following, for x ∈ (0, 1).

F (x) = ω
(
1 − e−u1

)
+ (1 − ω)

(
1 − e−u2

)
Result 2.2. The survival Function S (x) and hazard function h (x) of the ExRKD are
respectively given by

S (x) = ωe−u1 + (1 − ω) e−u2

and

h (x) =
1

x(1−x) [ωβu1e−u1 + (1 − ω) ρβu2e−u2 ]
ωe−u1 + (1 − ω) e−u2

.
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The proofs of Results 2.1 and 2.2 are straightforward and hence omitted. Figures 1,2
and 3 displays the p.d.f., c.d.f. and hazard function plots of the ExRKD for particular
parameter values.

Figure 1.: The p.d.f. plot of the ExRKD for different parameters.

Figure 2.: The c.d.f. plot of the ExRKD for different parameters.

Figure 3.: Plots of the hazard function of the ExRKD for different parameters.
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Result 2.3. If X follows the ExRKD with p.d.f. (2), then the rth raw moment µ′
r is the

following.

µ′
r =

r∑
j=0

(
r

j

)
(−1)j [ω δj (β, 1) + (1 − ω) δj (β, ρ)], (3)

where δj (β, ρ) =
∫∞

0 e−uj

(
1 + uj

1/ρβ
)−j

duj for j = 0, 1, 2, . . . , r.

Proof: By definition, the rth raw moment µ′
r of the ExRKD is

µ′
r =

∫ 1

0
xr 1

x (1 − x)

[
ωβ

(
x

1 − x

)β

e−( x
1−x )β

+ (1 − ω) ρβ

(
x

1 − x

)ρβ

e−( x
1−x )ρβ

]
dx

(4)
= I1 + I2,

where

I1 =
∫ 1

0
xr 1

x (1 − x)

[
ωβ

(
x

1 − x

)β

e−( x
1−x )β

]
dx (5)

and

I2 =
∫ 1

0
xr 1

x (1 − x)

[
(1 − ω) ρβ

(
x

1 − x

)ρβ

e−( x
1−x )ρβ

]
dx. (6)

If we put u1 =
(

x
1−x

)β
in (4), we get

I1 = ω

∫ ∞

0

u
r/β
1(

u
1/β
1 + 1

)r e−u1du1

= ω

∫ ∞

0

(
1 − 1

1 + u
1/β
1

)r

e−u1du1

Now, by binomial expansion we obtain the following.

I1 = ω
r∑

j=0

(
r

j

)
(−1)j

∫ ∞

0
e−u1

(
u

1/β
1 + 1

)−j
du1 (7)

Similarly, if we put u2 =
(

x
1−x

)ρβ
in (4) to get

I2 = (1 − ω)
r∑

j=0

(
r

j

)
(−1)j

∫ ∞

0
e−u2

(
u

1/ρβ
2 + 1

)−j
du2. (8)

Now on substituting (7) and (8) in (4), we get (3). By using (3), we calculate the mean,
variance, coefficients of skewness and coefficients of kurtosis of the ExRKD for particular
values of its parameters and listed them in Tables 1 and 2.
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Table 1.: For particular values of the parameters, the computed values of mean, variance, coefficients of skewness, and coefficients
of kurtosis of the ExRKD.

β
ρ = 0.1, ω = 0.5

Mean Variance γ1 γ2

0.1 0.366 0.213 0.546 -1.637

0.5 0.373 0.155 0.511 -1.396

0.75 0.38 0.136 0.484 -1.255

1 0.386 0.123 0.455 -1.128

1.5 0.396 0.105 0.39 -0.925

2 0.403 0.092 0.32 -0.771

2.5 0.409 0.083 0.246 -0.646

3 0.413 0.075 0.172 -0.54

Table 2.: For particular values of the parameters, the computed values of mean, variance, coefficients of skewness, and coefficients
of kurtosis of the ExRKD.

β
ρ = 0.5, ω = 0.2

Mean Variance γ1 γ2

0.1 0.368 0.211 0.546 -1.631

0.5 0.371 0.139 0.48 -1.392

0.75 0.377 0.108 0.397 -1.287

1 0.384 0.087 0.297 -1.204

1.5 0.398 0.059 0.089 -1.043

2 0.41 0.042 0.1 -0.851

2.5 0.42 0.032 0.261 -0.63

3 0.43 0.025 0.396 -0.386
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3. Estimation

Let X1, X2, X3, . . . , Xn be a random sample from an ExRKD with the parameters
β, ρ and ω. Then the log likelihood function for the ExRKD is given by

l = −
n∑

i=1
(xi) −

n∑
i=1

(1 − xi) +
n∑

i=1
ln

ωβ

(
xi

1 − xi

)β

e
−
(

xi
1−xi

)β

+ (1 − ω) ρβ

(
xi

1 − xi

)ρβ

e
−
(

xi
1−xi

)ρβ
 .

Now, by differentiating the log likelihood function with respect to the parameters of the
ExRKD and equating to zero, we derive the following likelihood equations, in which

λi (m, k, β) =
(

xi

1 − xi

)mβ

e
−
(

xi
1−xi

)β [
ln

(
xi

1 − xi

)]k

for m=1, 2 and k=0, 1.

∂l

∂β
= 0

equivalently
n∑

i=1

[
ωλi (1, 0, β) + ωβ [λi (1, 1, β) − λi (2, 1, β)] + ρ (1 − ω) λi (1, 0, ρβ) + ρβ (1 − ω) [λi (1, 1, ρβ) − λi (2, 1, ρβ)]

ωβλi (1, 0, β) + (1 − ω) ρβλi (1, 0, ρβ)

]
= 0 (9)

∂l

∂ρ
= 0

equivalently

n∑
i=1

[(1 − ω) λi (1, 0, ρβ) + ρ (1 − ω) [λi (1, 1, ρβ) − λi (2, 1, ρβ)]
ωβλi (1, 0, β) + (1 − ω) ρβλi (1, 0, ρβ)

]
= 0 (10)

and

∂l

∂ω
= 0

equivalently,

n∑
i=1

[
βλi (1, 0, β) − ρβλi (1, 0, ρβ)

ωβλi (1, 0, β) + (1 − ω) ρβλi (1, 0, ρβ)

]
= 0 . (11)

On solving likelihood equations (9), (10) and (11) we get the MLEs of the parameters
β, ρ and ω of the ExRKD. It is not possible to obtain the exact distribution MLEs of
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the unknown parameters β, ρ, and ω of the ExRKD , since they are not in closed form
expressions. Hence, we derived the second order partial derivatives of the log likelihood
function with respect to respective parameters and verified that their values are negative
which indicates the existence of the maximum likelihood estimates for the respective
parameters of the ExRKD.

4. Applications

In this section we discuss some applications of the ExRKD utilizing following COVID-19
data sets:

Data Set 1: This dataset contains COVID-19 mortality data for Canada over a
period of 56 days, from November 1 to December 26, 2020. The data is sourced from
the World Health Organization (WHO). [https://covid19.who.int/]

Data Set 2: This dataset includes the total number of COVID-19 deaths per million
people in India from April 10, 2020, to May 3, 2020. [https://covid.ourworldindata.
org/data/owid-covid-data.csv]

Figure 4.: Bar chart of descriptive statistics for data set 1.

Figure 4, shows the descriptive statistics for the data set 1, which gives insights into
the distribution and variability of the data set 1. The mean is 0.2304 and median is
0.2261, the difference between the two is relatively insignificant, which means the dis-
tribution is quite symmetric. The range is 0.218, the difference between the minimum
(0.1159) and maximum (0.3347) values. The interquartile range(IQR) is 0.0660, rep-
resenting the range of the middle 50% of the data. The standard deviation is 0.0520,
indicating moderate variability around the mean. The mode is 0.2075, the most common
value in the data set 1.

In figure 5, the histogram shows that the data is symmetrical and most of the values
are located between 0.15 and 0.30. Most frequently, the values are distributed in the
range from 0.20 to 0.25. The box plot shows the median, quartiles, and possible outliers
for the dataset. The median of the data is around 0.226, whereas its interquartile range
spans approximately from 0.20 to 0.27. No clear outliers because the whiskers stretch to
include both the minimum and maximum without any points beyond. In QQ plot points
are close to the red diagonal line and hence the data normally distributed. The last one
is violin plot, which combines a box-plot and a kernel density plot. This provides an
idea of how the data is spread over different values. The width of the violin plot for
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Figure 5.: Histogram, box plot, QQ plot and Violin plot for data set 1.

different values shows data density. Thus, the distribution looks to be symmetric and
bell-shaped.

Figure 6.: Bar chart of descriptive statistics for data set 2.

The Figure 6, shows bar graph of the important descriptive statistics for the data set
2. The distribution seems to be slightly right-skewed since the mean and median are
respectively 0.4674 and 0.4340. The range for the dataset varies from 0.1400 to 0.9180,
which is equal to 0.7780, and ranges in a similar way that the standard deviation of
0.2301 differs. The IQR equals 0.3405, which represents the variation of the middle 50%
of the data. The mode is 0.1400 which is the most common value. From Figure 7, the
box plot suggests that the data is symmetrically distributed around the median with no
significant outliers. The Q-Q plot indicates that the data follows a normal distribution
with slight deviations at the tails. The violin plot provides a view of the data’s density
and distribution.

All the three test results in Table 3 shows that the ExRKD distribution is good
fit for both data sets because of high p-values for the Kolmogorov-Smirnov test. The
test statistic values of Cramér-Von Mises and Anderson-Darling tests are relatively
low, which indicates that there is no significant evidence to reject the null hypothesis.
Thus, the ExRKD provides good fit to both data sets considered here. Now for model
comparison, we considered reduced Kies distribution (RKD), exponentiated reduced
Kies distribution (ERKD) and beta Weibull (BW) in Tables 4 and 5.

58



Asian Journal of Statistical Sciences JithuGa, C.Satheesh Kumarb and V. Deneshkumara

Figure 7.: Histogram, box plot, QQ plot and Violin plot for data set 2.

Table 3.: K-S statistics, Cramér-Von Mises and Anderson–Darling test for ExRKD corresponding to Data Sets 1 and 2

Dataset Kolmogorov-Smirnov test P-value Cramer-Von Mises Test Anderson-Darling Test

1 0.125 0.775 0.072 0.666

2 0.166 0.902 0.144 1.031

Table 4.: Fitting of various models to data set 1

Model Estimates Log-likelihood AIC BIC

RKD β = 0.282 -94.486 190.972 192.998

ERKD δ = 5.101,
β = 0.452 -57.693 119.387 123.438

BW

c = 0.257,
α = 0.481,
β = 0.644,
γ = 0.793

-79.210 166.421 174.523

ExRKD
β = 1.089,
ρ = 1.00,
ω = 0.583

12.783 -19.5662 -13.4901

From Tables 4 and 5, one can observe the values of log-likelihood, Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC) for different models. These
metrics help to assess model fit and complexity and guiding in selecting the best model
for the data sets. Hence the results reveal that the ExRKD fitted as best model for both
data sets because of the lowest AIC and BIC values.
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Table 5.: Fitting of various models to data set 2

Model Estimates Log-likelihood AIC BIC

RKD β = 0.432 -43.937 89.875 91.053

ERKD δ = 2.159,
β = 0.417 -38.367 80.734 83.090

BW

c = 0.032,
α = 0.426,
β = 0.609,
γ = 0.803

-37.561 83.122 87.834

ExRKD
β = 1.426,
ρ = 0.426,
ω = 0.551

0.297 5.405 8.939

5. Simulation

This section presents a simulation study aimed at evaluating the asymptotic behaviour
of the MLEs for the parameters of the ExRKD.

Table 6.: Result of simulation study for the ExRKD

Sample size n Parameter Average Bias MSE

10
ρ -0.0518 0.0268
β -0.1377 0.18964
ω -0.02280 0.005202

25
ρ -0.0201 0.01012
β -0.06324 0.1000
ω 0.004799 0.000575

50
ρ -0.0103 0.0053
β -0.02665 0.03551
ω 0.002359 0.0002783

100
ρ -0.00469 0.0022
β -0.01176 0.01384
ω -0.000182 3.32607 × 10−6

The simulation study aimed at determining the properties of the likelihood estimators
for the parameters of the ExRKD were based on n observations from the considered
sets of parameters β = 2 , ρ = 0.9 and ω = 0.5 . A total of 200 samples were considered
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for this study to evaluate the performance of the various MLEs of the parameters of
the ExRKD, with reference to their mean values and mean square errors (MSEs). The
results obtained are presented in Table 6. It is evident from Table 6 that as the sample
size increases, the mean value of the estimators approaches the original value of the
respective parameters, and the MSEs of the estimators decrease accordingly.
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